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Abstract. Supply chain distribution network system provides an optimal plat-
form for efficient and effective supply chain management. There are trade-offs 
between efficiency and responsiveness. In this research, a multi-objective ca-
pacitated location-inventory distribution network system is formulated which 
integrates the effects of facility location, transportation, and inventory issues 
and includes conflicting objectives. This model allows determining the optimal 
locations of distribution centers (DCs) and the assignment of buyers to DCs to 
find the set of Pareto optimal solutions. The possibility of a hybrid GA ap-
proach and its scenario analysis is investigated to understand the model per-
formance and to illustrate how parameter changes influence its output. 

Keywords: Location-inventory distribution network system, Multiobjective 
evolutionary algorithm, Scenario analysis. 

1   Introduction 

Enterprises are facing competitive environments by implementing new strategies and 
technologies in response to the challenges and customer demands. Recently, two 
generic strategies for supply chain design emerged: efficiency and responsiveness. 
Efficiency aims to reduce operational costs; responsiveness, on the other hand, is 
designed to react quickly to satisfy customer demands and save costs. In traditional 
distribution systems, minimizing costs or maximizing profits as a single objective is 
often the focus. However, very few distribution network systems are single objective 
problems. Multi-objective formulation has to be considered whose solutions will be a 
set of Pareto alternatives representing the tradeoffs among different objectives.  

Recently, Daskin et al. [1] introduced a joint location-inventory model with risk 
pooling (LMRP) that incorporates inventory costs at the distribution centers (DCs) 
into the location problem. LMRP assumes uncapacitated DCs which is usually not 
practical. Capacity limitation may affect the number and locations of the facilities, the 
inventory that can be stored at the facilities and consequently the order frequency as 
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well as the assignment of buyers to the facilities. Our model builds upon the initial 
LMRP model with some differences. First, a capacitated version of the similar model 
is established. Second, customer responsiveness and volume fill rate are incorporated 
as two extra performance metrics to make our contribution. With these considerations, 
we present a capacitated Multi-Objective Location-Inventory Problem (MOLIP) 
which results in a Mixed-Integer Non-Linear Programming (MINLP) formulation. 

Evolutionary optimization algorithms are known to be efficient-solving and easy-
adaptive, especially those where traditional methods failed to provide good solutions 
(e.g. MINLP). Recently, multiobjective evolutionary algorithms (MOEAs) have be-
come prevailing since the pioneering work by Schaffer [2]. There are many efficient 
MOEAs that are possible to find Pareto optimal solutions as well as widely distributed 
sets of solutions, NSGA-II [3] is one of the most successful approaches. In our study, 
the well-known NSGA-II algorithm and a heuristic assignment procedure are incorpo-
rated that help to approximate the Pareto frontier for optimizing MOLIP. 

This paper is organized as follows. Section 2 discusses relevant literature review. 
Section 3 details the model formulation. Section 4 proposes a hybrid genetic algorithm 
with a heuristic procedure for MOLIP. Section 5 illustrates computational results of 
simulated problems and considers scenario analysis to compare their performance, and 
finally, conclusions with some directions are provided in section 6. 

2   Literature Review 

Research on integrated location-inventory distribution network systems is relatively 
new. Nozick & Turnquist [4] proposed a joint location-inventory model to consider 
both cost and service responsiveness trade-offs based on the uncapacitated facility 
location problem. The analysis demonstrated an approximate linear safety-stock cost 
function in the framework and proposed a Lagrangean-based scheme. Miranda & 
Garrido [5] studied an MINLP model to incorporate inventory decisions into typical 
facility location models to solve the distribution network problem by incorporating a 
stochastic demand and the risk pooling phenomenon. A heuristic solution approach, 
based on Lagrangian relaxation and the sub-gradient method was presented. Sabri & 
Beamon [6] presented an integrated multi-objective multi-echelon stochastic model 
that simultaneously addresses strategic and operational planning decisions by devel-
oping an integrated two sub-module model. Similarly, Gaur & Ravindran [7] studied 
a bi-criteria optimization model to represent the inventory aggregation problem under 
risk pooling to find out the tradeoffs in costs and responsiveness.  

Daskin et al. [1] and Shen et al. [8] present a LMRP model that incorporated safety 
stock placement into a location problem for a two-stage network. There are several 
variations of the LMRP model. Ozsen [9] presents a capacitated version of LMRP 
which determines the ordering policy at the DCs so that the inventory aggregation 
does not exceed DC capacities. A Lagrangian relaxation algorithm was applied to 
solve this problem. Shen & Daskin [10] extended LMRP to include the customer 
service component and proposed a nonlinear multi-objective model including both the 
cost and service objectives. They developed a weighting method and an efficient GA-
based heuristic solution approach for quick and meaningful evaluation of cost/service 
trade-offs. From the survey, some innovative research aspects that are noteworthy 
have been incorporated in our research work as follows:  
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Multi-objective location inventory problem. Very few researches have addressed 
this problem. A multiobjective formulation should be required to provide the tradeoffs 
of Pareto optimal alternatives among total costs and customer service. 

Multi-objective evolutionary algorithms (MOEAs). Most reviewed research works 
focused on traditional optimization techniques but few have performed successfully 
and efficiently. In the contrast, MOEAs have been successful developed for various 
optimization problems and enable the possibility for the proposed MOLIP. 

3   Mathematical Formulation 

3.1   Problem Description 

Suppliers and distributors in general, route their products through DCs. Consider 
configuring a supply chain distribution network system, where a single supplier and a 
set of DCs are established and dispersed in a region to distribute various products to a 
set of buyers. The DCs act as intermediate facilities between the supplier and the 
buyers and facilitate the product shipment between two echelons. The supplier wishes 
to determine the opening DCs and to design the distribution strategy satisfying all DC 
capacities. Basic assumptions are used. It is assumed that all products are produced by 
a single supplier and one specific product for a buyer should be shipped from a single 
DC. Reverse flows and in-transit inventory are not considered. All demands of the 
buyers are uncertain. The capacities at the supplier are unlimited but capacitated at 
DCs. More assumptions will be stated when the mathematical model is illustrated. 

Indices. i is an index set for buyers (i∈I). j is an index set of potential DCs (j∈J). k is 
an index set for product classifications (k∈K). 

Decision Variables. k
wjQ  is the aggregate economic order quantity for DC j for prod-

uct k shipped from the supplier. Yj =1 if DC j is open (=0, otherwise). k
jiX =1 if DC j 

serves buyer i for shipping product k (=0, otherwise).  

Model Parameters. μj is the capacity of DC j. dik is the mean demand rate for product 
k at buyer i. σik is the standard deviation of daily demands for product k at buyer i. 

k
j ς  is the average lead time (daily) for product k to be shipped to DC j from the sup-

plier. ψ is the number of days per year. fj is the fixed annual facility operating cost of 
locating at DC site j. k

jh  is the annual inventory unit holding cost at DC j for product 

k. k
jo  is the ordering cost at DC j for product k per order. k

ji tc  is the unit variable 

transportation cost for shipping product k from DC j to buyer i. k
jrc  is the unit vari-

able production and transportation cost for shipping product k from the supplier to 
DC j. 

jih  is the distance between DC j and buyer i. k
wjD  is the expected annual de-

mand for product k through DC j. Dmax is the maximal covering distance, that is, buy-
ers within this distance to an open DC are considered well satisfied.  
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3.2   Mathematical Models 

To begin modeling this problem, we also assume that the daily demand for product k 
at each buyer i is independent and normally distributed, i.e. N(dik,σik). Furthermore, at 
any site of DC j, we assume a continuous review inventory policy (Qj, rj) to meet a 
stochastic demand pattern. Also, we consider that the supplier takes an average lead 
time k

j ς  (in days) for shipping product k from the supplier to DC j so as to fulfill an 

order. From Eppen’s inventory theory [11] considering the centralized inventory sys-
tem, we assume that if the demands at different buyers are uncorrelated, the aggregate 
safety stock of the product k pooled at the DC j during lead time k

j ς  is normally 

distributed. Then, the total amount of safety stock for product k at any DC j with risk 

pooling is 
2

1
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the cost of transporting products from the supplier to the buyers via specific DCs, (iii) 
operating cost, which is the cost of running DCs, (iv) cycle stock cost, which is the 
cost of maintaining working inventory at DCs, and (v) safety stock cost, which is the 
cost of holding sufficient inventory at DCs in order to provide specific service level to 
their buyers. Hence, it can be represented as total cost function 
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Based on Z1, the optimal order quantity *k
wjQ  for product k at each DC j can be ob-

tained through differentiating eq. (1) in terms of k
wjQ , for each DC j and each product 

k, and equaling to zero to minimize the total supply chain cost. We can obtain 
k
j

k
wj

k hDoQ ⋅⋅= j
k
wj 2

*

 for ∀ open DC j, ∀ k.  In this case, there is not any 
capacity constraint for the order quantities k

wjQ  since we assume the storage capacity at 

the supplier is unlimited. Thus, replacing *k
wjQ  in the third and fourth terms of Z1 in 

eq. (1), we can obtain a non-linear cost function of Z1. In the following, we propose 
an innovative mathematical model for the Multi-Objective Location-Inventory Prob-
lem (MOLIP).  
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Eqs. (2)-(4) gives the objectives. While eq. (2) of Z1 is to minimize the total cost, eq. 
(3) of Z2 and eq. (4) of Z3 give the objectives referred to maximizing customer service 
by two performance measurements: (i) volume fill rate (VFR), defined as the satisfied 
fraction of total demands without shortage; (ii) responsiveness level (RL), the per-
centage of fulfilled demand volume within specified coverage distance Dmax. Eq. (5) 
restricts a buyer to be served by a single DC if possible. Eq. (6) stipulates that buyers 
can only be assigned to open DCs. Eq. (7) are the maximal capacity restrictions on the 
opened DCs to enable the capability of holding sufficient inventory for every product 
that flows through the DC, and also the part of safety stock so as to maintain the 
specified service level. Eq. (8) are binary constraints. The proposed MOLIP model 
would not only determine the DC locations, the assignment of buyers to DCs, but also 
find out endogenously both the optimal order quantities and safety-stock levels at 
DCs. Since two of the three objective functions (Z1 and Z3) are nonlinear, the formu-
lation results in an intractable multi-objective MINLP model. 

4   A Genetic Approach for MOLIP 

4.1   Solution Encoding 

Each solution of MOLIP is encoded in a binary string of length m = |J|, where the j-th 
position indicates if DC j is open (= 1) or closed (= 0). This binary encoding only 
considers if a given DC j is open or closed (variables Yj). A solution of MOLIP also 
involves the assignment of buyers to open DCs (variables Xji). This assignment is 
performed by a greedy heuristics used to obtain the buyer-DC assignments where the 
buyers are sorted in the descending order of their demand flows and assign them in 
the sorted order to the DC according to the following rules: 

Rule 1. If the buyer i is covered (i.e., there are DCs within a coverage distance), it is 
assigned to the DC with sufficient capacity (if exists) which can serve it with the 
minimal difference between the remaining capacity of an open DC j and the demand 
of the buyer i through DC j. That is, a DC is tried to be assigned as full as possible. 
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Rule 2. If the buyer i cannot be covered or there is no successful assignment from the 
coverage set τi, it is then assigned to the DC (with sufficient capacity) that increases 
the total cost by the least amount, regardless of its distance to the DC if possible.  

However, this assignment procedure cannot guarantee that each buyer can be assigned 
to a satisfiable DC due to DC’s capacity limitations. Thus, the infeasible solution will 
degrade the supplier’s volume fill rate and may cause business losses. 

4.2   NAGAII-Based Genetic Algorithm for MOLIP 

Nondominating Sorting GA (NSGA-II) [3] is one of the best techniques for generat-
ing Pareto frontiers in MOEAs. For each solution, one has to determine how many 
solutions dominate it and the set of solutions to which it dominates. Thus, it ranks all 
solutions to form non-dominated fronts according to a non-dominated sorting process 
to classify the chromosomes into several fronts of nondominated solutions. To allow 
the diversification, NSGA-II also estimates the solution density surrounding a particu-
lar solution in the population by computing a crowding distance operator. During 
selection, a crowded-comparison operator considering both the non-domination rank 
of an individual and its crowding distance is used to select the offspring without lost 
good solutions (elitism), whereas crossover and mutation operators remain as usual. 
We summarized the NSGAII algorithm as shown in Fig. 1. 

 
Fig. 1. Graphical Representation of the NSGA-II Algorithm 

5   Computational Results and Scenario Analysis 

In this section, a set of test problems similar to [12] are generated in the base case 
scenario. Then, two diverse capacity scenarios are established for scenario analysis.  

5.1   Base Case Scenario (Scenario 1) 

In our experiments, random sets from a square of 100 miles of width are used to gen-
erate the coordinates for DCs and buyers in all test problems. We especially establish 
the following parameters for the base case scenario. The unit transportation cost tcji 



 A Capacitated Inventory-Location Model 329 

are set to 0.1 per mile. The unit production and shipping cost k
jrc  for product k from 

the supplier to DC j is generated uniformly on U(1,3). The average lead time k
j ς  is 

set to 5 days. The expected daily demands dik for product k at buyer i is generated 
uniformly on U(50,300). The daily inventory holding cost k

jh  at DC j for product k 
and the unit ordering cost k

jo  at DC j for product k are generated uniformly on 
U(5,10) and U(50,100), respectively. It is also assumed 365 working days ψ per year 
and the service level 1-α is 0.95. The maximal covering distance is 25 miles. The 
capacities of DCs are set to μj = capj × ∑∑dik / j , j = 1,.,J, capj ∼U(4,6), where the val-
ues of capj vary DC’s capacities. Here, we want to set the DC capacity to a multiple of 
the mean aggregate demand of a DC. The facility costs of DCs are set to fj = facj × 
{U(500,1000)+ U(500,1000) × dj

0.5}, where dj =∑∑dik and the values of facj vary the 
facility operating costs. The concavity of fj accounts for the economies of scale. In 
additions, the set of test problems is denoted by (k, j, i), where k is the number of 
products, j is the number of potential DCs, and i is the number of buyers. The values 
of the parameters are set to k = 1, 3; j = 5, 10, 15, 20; i = 30, 40, 50, 60.  

We report the performance solutions of 32 problem instances for the MOLIP 
model in terms of objective measurements, cost components and their respective 
percentage of total costs. Objective measurements include the optimal solutions of 
total cost (TC), volume fill rate (VFR), and responsiveness level (RL); the cost com-
ponents provide the results of facility cost (FC), transportation cost (TrC), inventory 
cost (IvC) and safety-stock cost (SSC) and their respective percentages of total costs 
(%). All objectives and cost components are expressed by the average values of their 
Pareto solutions and are derived by computing the average solutions of each problem 
instance after several iterations (say 50) for computational robustness. Since the net-
work structure with respect to test problems may be varied when the parameters k, j, i 
are changed, we establish an index called competitiveness level (CL) referred to a 
specific DC to measure the relative capacity ratio between supply ability provided by 
a DC and demand requirement incurred from the distribution network system. CL 
indicates computational difficulty of solving capacitated problems.  

In order to explore the statistical associations on 32 problem instances, the Pearson 
correlations among DC’s capacity CL and objective measurements have been derived. 
It is shown that there is a significant negative correlation between CL and TC with 
correlation coefficient of -0.639, implying that as CL increased, the average total cost 
decreased. However, there is not a similar correlation between CL and VFR or RL. 
The correlation coefficient between these groups for VFR was -0.167, and for RL was 
0.191. It is concluded that the tightly capacitated network could have overall impacts 
on total cost but only little effects on its volume fill rate and responsiveness level. 

Next, we measure the correlations among CL and cost components which have 
shown significant associations for three measured variables: transportation, inventory 
and safety-stock costs, with correlation coefficients of -0.722, -0.550 and -0.557, 
respectively. However, the facility costs are the least correlated among all cost com-
ponents with CL. That is, the additional capacity available in the network system 
enables more reduction on transportation, inventory and safety-stock costs but has no 
significant impact on facility costs. In depicted in Fig. 2, it is observed that those 
tightly capacitated problems (with small CL values) hold significantly dominating 
transportation costs as compared to others; however, TrC decreases considerably in 
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those problems when capacitated environment is loosened where FC takes the place 
as the major cost among others. It also reveals that transportation cost is the main 
factor for tightly capacitated problems but facility cost dominates gradually when 
additional DC capacity increases. 
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Fig. 2. Cost Components against Competitiveness Level (CL) for Scenario 1 

5.2   Scenario Analysis 

Our goal in this section is to illustrate the performance effects on the proposed solu-
tion procedure. We consider two diverse scenarios by changing the capacity scaling 
parameters of capj at a time as follows: capj ~U(2,4) for the tight capacity scenario 
(scenario 2) and capj ~U(6,8) for excess capacity scenario (scenario 3). In order to see 
the general effects of these scenarios to the base case scenario (scenario 1), the in-
cremental gap is expressed as a percentage gap instead of an absolute solution, which 
is defined as ((value of current scenario − value of scenario 1) / value of scenario 1) × 
100%. Also, an improvement percentage is used to find out the relative changes of the 
cost component proportions. In Table 2, comparative computational results for capac-
ity scenarios to the base case scenario are illustrated. 

Table 2. Comparative Results of Capacity Scenario Analysis 

Objectives Percentage Gaps Improvement Percentage Scenarios 
TC VFR RL FC TrC IvC SSC %FC %TrC %IvC %SSC 

S2 vs S1 -19.3% -21.6% -28.8% -22.2% -13.9% -21.4% -24.9% -1.3% 2.4% -0.8% -0.2% 

S3 vs S1 6.1% 8.1% 32.8% 17.7% 0.4% 12.7% 11.81% 1.69% -3.1% 1.27% 0.1% 

 
The first row of S2 vs. S1 in Table 2 provides the comparative computational results 

under scenario 2 as compared to scenario 1. All the objective measurements tend to 
statistically decrease where TC reduced by 19.3% (in average), VFR reduced by 
21.6% and RL reduced by 28.8%. As compared to scenario 1, the general effect of 
scenario 2 is explained that the model is simultaneously reducing the objectives due to 
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DC capacities shortage. The most influenced objective by DC capacity tightness is RL 
since the buyers could be possibly assigned to a DC that is not satisfied within the 
coverage distance if there are still additional capacities available. Nevertheless, if 
tightness causes insufficient capacities, the supplier will gradually lose his orders 
from buyers. That is the reason why VFR is also reduced. Contrarily, the second row 
of S3 vs. S1 in Table 2 provides comparative computational results under scenario 3 
as compared to scenario 1, where TC increased by 6.1% (in average), VFR increased 
by 8.18% and RL increased by 32.8%. With sufficient capacity, the supplier can not 
only satisfy as many as his customers but also are capable of assigning them to nearer 
DCs according the greedy heuristic. That is why both VFR and RL are increasing at 
the same time and especially RL shows the largest increase of gaps among others.  

The general effect on cost components is that all relevant costs are optimized in 
tight capacity scenario (scenario 2). First, FC is decreased because the optimal num-
ber of DCs is reduced. Second, TrC should have increased because it is inversely 
related to the number of opening DCs. The fact can be identified that only TrC has the 
positive improvement percentage (2.4% in Table 2) among others. However, scenario 
2 reduces the buyer’s willingness to place orders so as to reduce VFR. Thus, TrC is 
decreased for the sake of sales loss. Third, IvC is also reduced for the similar reason 
of the decreasing amount of opening DCs and the reduction of sales. Finally, tight 
capacity causes strong effects on the SSC as well. The relationship between safety 
stock and the number of opening DCs is explained by the square root law and the 
portfolio effects [13]. Tight capacity enables less risk-pooling that makes worse  
inventory aggregation. The larger amount of safety stock was no longer required. 
However, scenario 3 is contrarily different from scenario 2 that the model occurs to 
increase all relevant costs.  

6   Concluding Remarks and Research Directions 

This paper presented the MOLIP model initially represented as a multi-objective 
optimization formulation which examines the effects of facility location, transporta-
tion, and inventory issues. The MOLIP model via a GA approach has been success-
fully applied for providing promising solutions on a set of test problems and enhances 
the possibility of including realistic facility transportation, inventory costs in this 
model. The scenario analysis illustrates that excess capacity in network design is 
beneficial for volume fill rate and responsiveness level and has only little expense of 
total costs. The computational results above imply that network capacity tightness 
needs to be adjusted when new buyers are introduced or demand changes so as to 
capture the tradeoff between costs and customer service levels. The model proposed 
in this research is helpful in adjusting the distribution network to these changes. 

An implication of this research is particularly relevant for firms seeking to increase 
DC’s capacity flexibility in their distribution networks. To gain more benefits from 
their volume fill rate and responsiveness level, the firms might face the problem of 
increasing total cost, especially the transportation cost. However, firms could be sug-
gested to use the services of third parties to manage down the facility costs and  
the transportation costs because that allows for faster facility changes in response to 
market or demand changes. As a result, the relative importance of facility cost in the 
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network design declines. This proposed model can be extended in a number of ways. 
First, inclusion of other inventory and distribution decisions, such as inventory order 
policy, frequency and size of the shipments, would be a direction worth pursuing. 
Second, inventory at the buyers has to be explicitly modeled. Third, it is likely to 
include stockout and backorder costs in the model.  
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